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T INTRODUCTION

The partially plastic problem of pressurized thick-walled cylinder 1s of
- : practical importance to pressure vessels and the autofrettage process of gun
barrels. Many solutions for this problem have been reported (refs 1-7).
» For thick tubes under very high pressure operation, the elastic-plastic
material model should be represented by the von Mises' yield criterion,
Prandtl-Reuss' incremental stress-strain laws, the strain-hardening, and
compressibility (ref 8). However, a closed-form solution exists only in the
g plane-strain case neglecting strain-hardening and compressibility.
: For the generalized plane-strain problems considered here, numerical
solutions were reported by the finite-difference method (refs 4,7) and finite-
element method (ref 5). The incremental displacements were used as the basic
unknowns and a displacement function was assumed in the finite—element method
(ref S). The incremental stresses and strains were used in Reference 4 as the
basic unknowns, but only the incremental strains éere Qsed in Reference 7.
The spatial discretization used in References 4 and 7 was based on the forward
difference scheme and a fixed sequence of incremental loading was used.

In this report, a new method is developed and more accurate numerical
results are obtained. The incremental strains are chosen as the basic

unknowns in the finite-difference formulation. Both strain-hardening aad

ideally-plastic materials can be considered. The spatial discretization is
based on the central differeuce scheme and the incremental sizes of the

applied loading are determined automatically in the program. The incremental

References are listed at the end of this report.
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results are calculated directly and no iteration is needed. The convergence

of the approach will dbe discussed and more accurate results will be reported.

BASIC EQUATIONS
Agssuning small strain and no body forces in the axisymmetric state of
generalized plane-strain, the radial and tangential stresses, o, and Og, must
satisfy the equilibrium equation,
r(30,/3r) = gg - o (1)
and the corresponding strains, €, and €p, are given in terms of the radial

displacement, u, by .
€ = 3u/3r , €g = u/r (2)

It follows that the strains must satisfy the equation of compatibility
r(3€g/3r) = e - €9 (3)
If the material 1s assumed to be elastic~plastic, obeying the Mises' yield
criterion, the Prandtl-Reuss flow theory, and the 1sotropic hardening law, the
stress~strain relations are (ref 1):
deg' = doy'/2G + (3/2)o0y4'da/(cH') (%)
do >0 for L =r,0,z -
deg = E1(1-2v)day (5)
where E, v are Young's modulus, Poisson's ratio, respectively,
2G = E/(1+v),
ey = (eptegrez)/3 |, ' = € - ¢
Og = (Optoghtoz)/3 |, oy' = 04 = 0y
0 = (1/V2)[(0p=08)2 + (0g-05) 2 + (Gz-0z) 2]1/2 > g (6)
and 0, 13 the yield stress in simple tension or compression. For a strain-

hardening material, H' is the slope of the effective stress/plastic strain




curve )
a = H([deP) (7)
For an ideally-plastic. material (H' = 0), the quantity (3/2)do/(oH') is
replaced by d)A, a positive factor of proportionality. When o < o, or do < O,
the state of stress 1s elastic and the second term in Eq. (4) disappears.
Following Yamada et al (ref 9), Eqs. (4) and (5) can be rewritten in an
incremental form
doy = dijdej for 1, = r,0,z @)
and
dgy = 2G{v/(1~=2v) + 611 - oi'aj'/S]
where
2 1
S=s+g H'/G)o? , H'/E = w/(l-w) (9)
WE is the slope of the effective stress—strain curve, and sij is the Kronecker
delta.
This form was used in the finite-element formulation for solving elastic-
plastic thick~walled tube problems (ref 5). In the following section, the

incremental stress-strain matrix will be used in the finite-difference

formulation.

FINITE-DIFFERENCE FORMULATION

Consider a thick-walled cylinder of inner radius a and external radius b.
The tube is subjected to inner pressure p, external pressure q, and end force
f. The elastic solution for this problem is well~known and the pressure p*,
q*, or f* reguired to cause initial yielding can be determined by using the
Mises' yield criterion. For loading beyond the elastic limit, an incremental

approach of the finite-difference formulation is used. The cross-section of
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the tube is divided into n rings with ri=a,r2,...,rK=p,«..,rq+1*b where p is

the radius of the elastic-plastic interface. At the beginning of each

increment of loading, the distribution of displacements, strains, and stresses
are assumed to be known and we want to determine Au, Ae., Acg, Aez, Ao, Agg,
Ao, at all grid points. Since the incremental stresses are related to the
incremental strains by the incremental form (Eq. (8)) and Au = rleg, there
exists oaly three unknowns at each station that have to be determined for each
increment of loading. Accounting for the fact that the axial strain €, is
independent of r, the unknown variables in the present formulation are (Aeg)y,
(b€,)y, for 4 = 1,2,...,n,n+l, and Ae;.

The equation of equilibrium (1) and tﬁe equation of compatibility (3) are
valid for both the elastic and the plastic regions of a thick-walled tube. A
firgt-order—correct finite~difference analog of these two equations at i =
1,...,n has been given in References 4 and 7. Other finite-difference forms
can be written. I# this report, the difference equations given below are
second-order—-correct. The equation of compatibility (3) and équation of

equilibrium (1) are replaced, respectively, by

. c11(Aeg)y + c21(8ep)y + c31(A€@) g4 + c4i(A€r)i4] = c54 (10)
an .
c14(80p); + c21(80g)y + c41(80) 141 + c43( 80141 = cpi (11)
where 3 1 1 1
B e e + - M e o= e
3 1 1 1 S
cyqy = - - - Cay = = = + -
3% 5771 c4s 272N e
.e54 = = c14(€g)g = c21(€p)g ~ c31(€Q)4+1 = c41( )i+l 4
e e
cot = = c14(9p)g = c21(08)1 = 31(0p) 141 = c41(08) 141 e
' R

o e e e

>
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and :
' Yy = ri4/ry (12)

With the aid of the incremental stress—strain relations (8), Eq. (ll) can
be written as
c71(8eg)y + cgy(Aep)y + c9i(8eg)i+)l + c104(B€p) 141 + c111(8€z) = cg1  (13)
where
‘e71 = c11(d12)1 + €24(d22)1 , cgy = c11(d11)1 + e21(d21)y
cgg = ¢31(d12) 441 + c41(d22)141 » €104 = e31(d11) 141 + c41(d22)1+1
c114 = c11(d13)1 + €24(d23)1 + 31(d13)1+1 + c41(d23)1+1 (14)
The boundary conditions for the problem are
Acc(a,t) = -Ap , Aop(b,t) = ~4&q

n
“121 [r1(80z)1 + r141(80z)141](r1+1-11) = umalp + Af (15)

where u is zero for open—end tubes, and one for closed-end tubes. Using the"

incremental relations (8), we rewrite Eq. (15) as

(d12)1(8€g)1 + (d11)1 (8er)] + (d13)1de; = —4p (16)
(d12)0+1(2€@)n+1 + (d11)n+1(8&p)p+1 + (d13)n+18€; = =4q (17)
and
n
121[6121(559)1 + c131(Bep)g + c141(8€@) 141 + c151(BEr) 141
+ c161(8ez)] = ualap + Af/ (18)
where

c12 = (rg+1-re)ri(d32)1 , ec131 = (ri+1-ri)ri(d31)g
c141 = (ri41-v1)Tr141(d32)441 » €151 = (ri+1-r)ri+1(d31) 141
€161 = (ri41-r1)[r1(d33)g + ri4+1(d33)1+1] (19)
Now we can form a system of 2n+3 equations for solving 2n+3 unknowns, (d4eg)y,

(Agg)y, at L = 1,2,...,n,n+l and Ac,. Equations (16), (17), and (18) are
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taken as the first and last two equations, respectively, and the other 2n
equations are set up at £ = 1,2,...,n using Eqs. (10) and (13). The final
system is an unsymmetric matrix of arrow type with the nonzerc terms appearing
in the last row and column and others clustering about the main diagonal, two
below and two above. In the computer program which was developed, the
dimensionless quantities r/a, E€./d,, Ecg/c,, E€,/0,, 0p/0,, 0g/0y, 0,/0,,
p/9y, q/0q, f/(ﬂazoo) were used in the formulation and the Gaussin elimination
method was used to solve these equations. All calculations were carried out

on IBM 4341 with double precision to reduce round-off errors.

OPTIMAL INCREMENTAL LOADING

Given any combination of incremental-loading (4p, 4q, or Af), we can now
determine all incremental results (displacements, strains, and stresses)
directly. No iteration is needed, while in Reference 4, many iterations in
each step were required because a value for Ae; was assumed. The sizes of
incremental~loading should be chosen properly in ord;r to obtain accurate
results at a reasonable cost. When the total applied pressure p is given, it
1s natural to divide the loading path in m equal fixed increments such as 4p =
(p-p*)/m. Larger values of m give more accurate results. A sequence of
decreasing load~increments is a better choice than that of equal lncrements.
In order to increase the efficlency without affecting the accuracy, an
adaptive algorithm has been implemented on the basis of a scaled incremental-
loading approach (ref 5).

In each step, a dummy load-increment such as 4p is applied and the

incremental results 40y for { = r,0,z at all grids are determined. For all

-------------
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grid points at which ¢ = ||ogl{ < o, we compute the scaler a's by the formula

1 L
a= > T+ (124 41180y [12Cap211ay112)11/2}/((80y112 (20) -
where '

I= [lagl12 + [laog112 = |log+aogll2 (21) SR

and |logll, 1laogll, |log + Agyl! are computed by

log[]2 = ; ((op-0g) 2 + (0g-0z) 2 + (0z-07) 2 (22)
Let A be the minimum of the a's. Then A is the load-increment factor just
sufficient to yield one additional point. A sequence of A(j) can be -
determined for all steps j = 1,2,...m and the updated results are

p(3) = p(3-1) + A(D) ap(D)
oy (1) = o (1) 4+ ADag(D | et (23) -

This sequence of incremental loading is optimal for the present problem '
because all the coefficients c¢'s in Eqs. (12), (1l4), and (19) are functions of

the previous stresses and strains. . ——

CONVERGENCE STUDY

. In order to demonstrate the accuracy of the approach, four convergence
studies.are made. Consider a thick-walled tube of wall ratio b/a = 2 and T
subjected to internal pressure only. The cross—section of the tube is divided
into n rings of equal thicknesses, i.e., h = (b-a)/n. The first problem is a
closed~end tube loaded in the elastic range with G = 105/3 psi, v=0.3, p=35 -
psi. The numerical results with n = 10, 20, 50, 100 are shown in Table I
together with the Lame” solution for the hoop stresses and strains at the
boundaries a and b. The numerical resﬁlts are correct up to four digits with

a = 100.
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TABLE I. ELASTIC SOLUTION FOR A CLOSED-END TUBE

(b/a = 2, G = 105/3 psi, v = 0.3, p =5 psi)

T ] | I T I [
A L M ML M M
T ] T [ [ B
| Exace | - | 8.3333 } 3.3333 } 9.3333 } 2.8333 {
| | |

| | 10 | 8.3000 = 3.3000 | 9.3000 | 2.8000 |
| ! | ] | |
{ FDM } 20 | 8.3256 { 3.3250 | 9.3250 } 2.8250 |

| |

| { so | 8.3320 | 3.3320 | 9.3320 | 2.8320 |
| | | | | ] |
| | 100 | 8.3330 | 3.3330 | 9.3330 | 2.8330 |
1 l | 1 ] 1

L e o E N e e e e e ae o Ty Bt o o a aeo o J gz

The second problem is the initial yielding solution for a plane-strain
tube with E/g, = 200, v = 0.3, €, = 0. The numerical results with a = 10, 20,
50, 100, 200, are shown in Table II together with the exact solution for the
dimensionless p = p/d,, 0g = 0p/0,, €9 = (E/0g)(€q) at r = a and b.

TABLE II. INITIAL YIELDING SOLUTION FOR A PLANE~STRAIN TUBE

(b/a = 2, E/g, = 200, v = 0.3)

T T | | | - [

S e L U U N O N

T 1 I [ | | [ T

} Exact | ~ ] .43229 | .72049 | .28820 | .82424 | .26226 |

| | { { ] | |

; : 10 } .00110 } -.00107 { ~.00216 | -.00054 | -.00065 |

] | |

} } 20 { .00028 { -.00027 } ~.00054 | -.00014 | -.00016 |

| | |

} FDM { 50 { .00005 { -.00004 | ~.00009 | -.00002 | -.00003 |

| ] | |

} ! 100 } .00001 : -.00001 | ~.00003 | -.0000L | -.00001 |

' ] | ] |

| | 200 ] .00001 | .00000 | ~.00001 | .00000 | .0000O |

| | | e N N RS |
R
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The third problem is the elastic-perfectly plastic solution for a plane-
strain tube with b/a = 2, E/g, = 200, v = 0.3, w=0, €, = 0. The numerical

results with n = 10, 20, 50, 100, 200 are shown in Table III for the pressure .

and displacement at the bore corresponding to 50 percent and 100 percent

overstrain, 1.e., p/a = 1.5 and 2.0. e

TABLE III. ELASTIC-PERFECTLY PLASTIC SOLUTION FOR A PLANE-STRAIN‘TUBE

(b/a = 2’ E/ao = 200, V= 003)

1 F | T

| ] 50% Overstrain = 1007 Overstrain ‘ -

| |

s T s

n P €ola 12 €gla

[ l | I | | R

T T I | | T o

] 10 | .71863 | 1.97725 { .79849 } 3.68937 { —

| | |

| 20 | .71825 | 1.96969 [ .79790 | 3.66831 =

l | | l l e

} 50 % .71808 } 1.96780 } .79760 { 3.66280 { e

l 100 | .71803 | 1.96759 | .79751 | 3.66211 | —

| | { | | { -

| 200 | .71801 | 1.96757 | 79747 | 3.66199 | 2553

| B N | ) J S ST
The numerical results converge and are accurate up to four digits with n = .tif

" wsdany

100. There is no closed-form solution available for comparison. The famous Y
paper by Hodge and White (ref 2) has been used quite often as a basis for T
assessing the accuracy of other approximate methods. However, the numerical

integration is cumbersome. The present formulation is much simpler and seems -
more accurate. In order to further demonstrate the accuracy of the present

approach, a couvergence study for an incompressible, ideally-plastic thick

tube in plane—strain condition has been made and compared with exact solution - .

(ref 2). The numerical results for a nearly incompressible material (v =




0.49999) are shown in Table IV together with the exact solution (v = 1/2) for

the internal pressure and the displacement at the bore cofrespondiﬁg to 50

‘ percent and 100 percent overstrain. h{:
" TABLE IV. INCOMPRESSIBLE, IDEALLY-PLASTIC SOLUTION FOR A PLANE~STRAIN TUBE
(b/a = 2, Efag = 200, v = 0.49999)
1 ] T ..
| | S0% Overstrain I 100% Overstrain } ﬁ{
+ : - | |I - I - |
I T IO L L -
T I ! T r ' "
| 10 | «72069 | 1.95714 | .80015 | 3.48806 | -
: 20 } .72077 : 1.95072 : .80034 : 3.47012 :
= 50 { .72078 : 1.94891 } .80038 { 3.46509 { ;?:
: 100 : .72078 { 1.94865 } .80038 { 3.46437 : h
} Exact = .72078 : 1.94856 : .80038 { 3.46610 : o
| 1 ) . | L o
We may thus conclude that exact solutions can be obtained by this numekiéal . . ;:j
approach. }ii;
ADDITIONAL RESULTS | ;;;
After establishing the convergence and accuracy of this new approach, the o
numerical results for more general problems have been obtained. Some of the
additional results are documented here for future comparison by others. All L
numerical results preseuted here are for a thick-walled tube with wall ratio j?f
b/a = 2, E/0, = 200, v = 0.3, n = 100, w = E./E = 0.1. The numerical results
are accurate up to four or five digits. Table V shows the results of the .
dimensionless quantities p/d,, 09/0y, 0;/0,, (E/05)er, (E/0y)eg, (E/0y)eEs at T
'
10




...........

the inside or elastic-plastic boundary p for p/a = 1.0, 1.1, 1.2,...,2.0 in a
plane~strain tube with strain-hardening parameter w = 6.1. Tables VI and VII
show the similar results of the dimensionless stresses, strains, displacement
at the bore or elastic-plastic boundary for various stages of elastic—-plastic
loadings in an open—end or closed-end tube, respectively.

TABLE V. ELASTIC-PLASTIC SOLUTION FOR A PLANE~STRAIN TUBE

(b/a = 2, Efo, = 200, v = 0.3, E./E = 0.1, n = 100, €, = 0)

1T ] T | 0 [ Ig-——‘.*—‘_r E Ua ’-
| | | Inside | | Inside | | == e | —— |
.{ p/a } p/ o, { og/a, { 06/ 95l { 0,/ g } 0/ a5l p } % } % a ;
| [ T [ I [ | T I
| 1.0 ] .43229 | .72049 | .72049 | .08646 | .08646 | -.67438 | .82424 |
} 1.1 : .51296 : 66972 } .75016 } .05586 : .10453 } -.91636 : 1.00141 l
: 1.2 ; .58362 { 63049 } .78249 : .02537 { 12427 : -1.17381 { 1.20371 :
{ 1.3 : 64556 } .60225 : .81739 : -.00409 } .14566 } -1.44917 } 1.43022 }
} 1.4 i .69982 = .58427 { 85479 = -.03148 I .16866 { -1.73882 = 1.68000 {
} 1.5 | .74725 { .57572 : .89457 } ~.05589 ; .19323 : -2.04304 } 1.95207 {
: 1.6 : .78851 : .57579 = 93667 { -.07658 { 21932 } -2.36107 = 2.24535 :
i 1.7 E .82416 } .58376 } .98092 } -.09302 : .24687 ; -2.69205 : 2.55869 %
| 1.8 | .85466 { .59898 l 1.02718 = -.10490 { .27581 : ~3.03504 : 2.89081 }
i 1.9 E .88041 } .62086 } 1.07530 : -.11205 l 30606 = -3.38898 { 3.24034 :
| 2.0 | .90177 : 64885 { 1.12509 { -.11447 { .33753 } -3.75274 } 3.60578 !
| N I N | J. L, il L
11
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